www.my.mainscloud.com

University College London DEPARTMENT OF MATHEMATICS

Mid-Sessional Examinations 2012

Mathematics 1101

Wednesday 11 January 2012 2:30 – 4:30

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination

- 1. (a) State the definition of convergence for a sequence of real numbers.
 - (b) Using only the definition of convergence, prove that $\lim_{n\to\infty} \frac{3n+1}{2n+5} = \frac{3}{2}$.
 - (c) Prove that if $\langle x_n \rangle$ and $\langle y_n \rangle$ are sequences with $\lim_{n \to \infty} x_n = \ell$ and $\lim_{n \to \infty} y_n = m$, then $\lim_{n \to \infty} (x_n + y_n) = \ell + m$.
 - (d) Using any techniques at your disposal, compute the limit of the sequence

$$x_n = \frac{2^n + 3^n}{2^n + (-4)^n}.$$

2. (a) Find, if they exist, the sup, inf, max and min of the set

$$S = \{x \in \mathbb{R} \mid x^2 - 2x < 0 \text{ and } x \ge 1\},$$

and briefly explain your answers.

(b) Consider the sequence $\langle x_n \rangle$ defined recursively by

$$x_1 = \frac{1}{2}$$
 and $x_{n+1} = \frac{1}{3}x_n + \frac{2}{3}$.

Show that this sequence is increasing and bounded above by 1.

- (c) Using the continuum property of the real numbers, prove that every increasing sequence which is bounded above converges.
- 3. (a) State the sandwich theorem for sequences.
 - (b) Compute the limit of the sequence

$$x_n = \sqrt[n]{3^n + 5^n + 7^n}$$

and justify your answer. Hint: you may use (without proof) the fact that $\lim_{n\to\infty} \sqrt[n]{a} = 1$ for any constant a > 0.

- (c) State the Intermediate Value Theorem for functions.
- (d) Prove that if $f:[0,2]\to [0,2]$ is any continuous function on [0,2], then there exists a number $\xi\in[0,2]$ such that $f(\xi)=2-\xi$.

PLEASE TURN OVER

- 4. (a) State the definition of convergence for a series $\sum_{n=1}^{\infty} a_n$.
 - (b) Prove that if $a_n > 0$ for all n and $a_{n+1}/a_n \to \ell$ as $n \to \infty$ for some real number $\ell > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

For parts (c) and (d), you may use any techniques at your disposal.

- (c) Prove that for any x > 1, the series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ diverges.
- (d) Prove that for all $x \in \mathbb{R}$, the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges absolutely.
- 5. (a) State the definitions of $\lim_{x\to a^+} f(x) = \xi$ and $\lim_{x\to a^-} f(x) = \xi$.
 - (b) Consider the function

$$f(x) = \begin{cases} (x-1)^2 + 3 & \text{if } x \le 2, \\ 4x - 2 & \text{if } x > 2. \end{cases}$$

Using only the definitions, i.e. using ϵ and δ , show that

$$\lim_{x \to 2^{-}} f(x) = 4$$
 and $\lim_{x \to 2^{+}} f(x) = 6$.

Is f continuous at x = 2?

- (c) Find a sequence $\langle x_n \rangle$ such that $x_n \to 2$ but the sequence $\langle f(x_n) \rangle$ does not converge.
- 6. (a) State the Bolzano-Weierstrass theorem.
 - (b) Let a and b be real numbers with a < b. Prove that every continuous function $f: [a, b] \to \mathbb{R}$ is bounded.
 - (c) Consider the function

$$f(x) = \begin{cases} x^3 & \text{if } 0 \le x < 1, \\ 0 & \text{if } x < 0 \text{ or } x \ge 1. \end{cases}$$

Determine (with explanation) whether the function is bounded on each of the intervals [-1,1] and \mathbb{R} . Can you apply the theorem of part (b) to this function on either interval?

(d) Determine (with explanation) whether the function f of part (c) achieves its maximum and minimum on each of the intervals [-1,1] and \mathbb{R} .

END OF PAPER